Overview of Nonlinear Bayesian Filtering Algorithm
نویسندگان
چکیده
منابع مشابه
Bayesian Nonlinear Filtering via Information Geometric Optimization
In this paper, Bayesian nonlinear filtering is considered from the viewpoint of information geometry and a novel filtering method is proposed based on information geometric optimization. Under the Bayesian filtering framework, we derive a relationship between the nonlinear characteristics of filtering and the metric tensor of the corresponding statistical manifold. Bayesian joint distributions ...
متن کاملNonlinear Bayesian Filtering Based on Mixture of Orthogonal Expansions
This dissertation addresses the problem of parameter and state estimation of nonlinear dynamical systems and its applications for satellites in Low Earth Orbits. The main focus in Bayesian filtering methods is to recursively estimate the state a posteriori probability density function conditioned on available measurements. Exact optimal solution to the nonlinear Bayesian filtering problem is in...
متن کاملAn Implicit Algorithm of Solving Nonlinear Filtering Problems
Nonlinear filter problems arise in many applications such as communications and signal processing. Commonly used numerical simulation methods include Kalman filter method, particle filter method, etc. In this paper a novel numerical algorithm is constructed based on samples of the current state obtained by solving the state equation implicitly. Numerical experiments demonstrate that our algorit...
متن کاملA Bayesian Filtering Algorithm for Gaussian Mixture Models
A Bayesian filtering algorithm is developed for a class of state-space systems that can be modelled via Gaussian mixtures. In general, the exact solution to this filtering problem involves an exponential growth in the number of mixture terms and this is handled here by utilising a Gaussian mixture reduction step after both the time and measurement updates. In addition, a square-root implementat...
متن کاملAffine Projection Algorithm Applied to Nonlinear Adaptive Filtering
In this paper, we present a framework for nonlinear adaptive filtering. It employs the formalism of reproducing kernel Hilbert spaces to incorporate nonlinearity into the classical affine projection algorithm. A nonlinear normalized LMS (NLMS) algorithm with kernels is also derived as a particular case. We propose a sparsification strategy that employs a coherence parameter to control the model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Engineering
سال: 2011
ISSN: 1877-7058
DOI: 10.1016/j.proeng.2011.08.093